Hello student! Use this practice test to prepare for your math placement test: **WAMAP Test 4.** Answers are included at the end of document, if you get 75%+ correct we encourage you to **take Test 4 with Highline College.**

Practice - Prep for Placement Test 4

1. Without using a calculator, find the exact value of the expression: $5\sin^2(1.9) + 5\cos^2(1.9)$.

2. Find the exact value of the expression

 $\sin\left(\frac{\pi}{4}\right) \cdot \cos\left(\frac{\pi}{3}\right)$ (Give the exact value - do not use decimals.)

3.

Two sides of a right triangle ABC (where C is the right angle) are given. Find the indicated trigonometric functions of the given angle θ . Give an exact answer (do not use decimals).

Let side a = 10 and side b = 7.

Compute the exact value of each quantity:

 $\sin(\theta) =$ _____

 $\tan(\theta) = _$

4.

" alt="Graphs"/>

The right triangle above forms an angle φ from one side, x, and the hypotenuse, c = 14. Where the side opposite to angle φ is not provided.

From the triangle, find $\langle \$ and $\langle \$ and $\langle \$ by a triangle, find $\$ be triangle, find find \ be triang

Compute the exact value of each quantity:

\$\displaystyle{\cos{{\left(&\phi;\right)}}}=\$_____

```
$\displaystyle{\tan{{\left(&\phi;\right)}}}=$_____
```

5. Use the Pythagorean Theorem to find the missing length in the given right triangle. The image is not to scale.

c = _____

Exact answer required; do not enter answer as a decimal. Entry Tip: To enter an answer like $50\sqrt{x}$, you would type 50sqrt(x). Preview your answer before submitting!

6.

Note: Triangle may not be drawn to scale.

Suppose a = 4 and b = 2.

Find an exact value or give least two decimal places:


```
7. If \sin\theta = \frac{3}{6} and \theta is in quadrant II, then

\cos(\theta) = _______;

\tan(\theta) = _______;

\cot(\theta) = _______;

\sec(\theta) = ______;

\csc(\theta) = ______;
```


Note: Triangle may not be drawn to scale.

Suppose a = 7 and b = 2.

Find an exact value or give at least two decimal places:

9. Simplify the expression $tan(t) \cdot cot(t)$ and write your answer as a single trig function or a constant:

 $\tan(t) \cdot \cot(t) = _$

10. Which of the following graphs is the correct plot of $y = 4\sin(x)$?

11. The graph shown is a vertical stretch of the graph of $y = \sin x$.

12. Which of the following, if any, is the graph of $f(x) = \sin x$ NOTE: Gridlines are in incements of one unit.

Practice-Prep for Highline College Math Placement Test/WAMAP: Test 4

13. Solve the equation $\tan^2(\theta)\sin(\theta) - \tan^2(\theta) = 0$.

θ = _____

14. Solve the equation $\sqrt{3}\sin(\theta) + 2\sin(\theta)\cos(\theta) = 0$. $\theta = _$ _____

15. Which of the functions sin(x) cos(x) and tan(x) are even functions [with the property that f(-x) = -f(x)]?

- A. $\cos(x)$ ONLY
- B. cos(x) and tan(x)
- C. $_\sin(x)$ and $\tan(x)$
- D. $_\sin(x)$ and $\cos(x)$
- E. $_\sin(x)$ ONLY

16. Using interval notation, give all values of θ such that $\sin \theta \ge 0$ for $0 \le \theta \le 2\pi$.

Click inside the answer box for formatting options and Greek letters/symbols.

(Type your answer in interval notation. Two lowercase "oo" will make the infinity symbol " ∞ ".)

This is standard American interval notation:

Interval Notation
(−∞,−5)
(−∞,−5]
(−5,∞)
[−5,∞)
(-5,0]

17. Simplify $\frac{(\sin(t) + \cos(t))^2 - (\cos(t) - \sin(t))^2}{2\sin(2t)\sec(t)}$ to a single trig function

18. Suppose *A* is an acute angle, and $\sin A = \frac{4}{5}$, $\cos A = \frac{3}{5}$.

Find sin2*A* and cos2*A*.

sin2A =_____

cos2*A* = _____

19. Write the product as a sum: 18cos(10*p*)cos(3*p*) = _____

20. For each part, type your answer in as a fraction. Do not use a decimal or round your answers.

If $sin(x) = \frac{3}{5}$, then csc(x) =_____

If $\cos(x) = \frac{2}{3}$, then $\sec(x) =$ _____

If tan(x) = 7, then cot(x) = _____

21. Solve the equation $\cos(\theta) + 2\sin(\theta)\cos(\theta) = 0$.

θ = _____

22. Solve the equation $\sin\theta - 2\sin\theta\cos\theta = 0$ on the interval [0,2 π]. List any repeated solutions only once.

θ = _____

23. Find the exact value of the expression

 $\sin\left(\frac{\pi}{6}\right) \cdot \cos\left(\frac{\pi}{4}\right)$ (Give the exact value - do not use decimals.)

24. Use trig identities to rewrite sin(2v) using sin(v) and/or cos(v).

Practice-Prep for Highline College Math Placement Test/WAMAP: Test 4

25. Use trig identities to rewrite the expression $\cos^2 \alpha$ in terms of $\sin(2\alpha)$ and/or $\cos(2\alpha)$ and constants.

 $\cos^2 \alpha =$ _____

26. Simplify.

 $(\sin\beta - \cos\beta)^2 =?$ A. _ 1
B. _ 1 - sin(2\beta)
C. _ 1 + cos(2\beta)
D. _ 1 - cos(2\beta)

27. Evaluate the following expressions. $\cos(\sin^{-1}(0))$ _____

$$\tan\left(\sin^{-1}\left(\frac{\sqrt{2}}{2}\right)\right)$$

28. Evaluate the following expressions. Your answer must be an exact angle in radians and in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. For example, type pi/6 for $\frac{\pi}{6}$.

 $\arcsin\left(-\frac{\sqrt{3}}{2}\right) =$ _____

 $\arcsin\left(-\frac{1}{2}\right) =$ _____

29. Evaluate the following expression. Your answer must be in exact form: for example, type pi/6 for $\frac{\pi}{6}$ or DNE if the expression is undefined.

sin(arcsin(0.1)) = _____

30. Evaluate the following expressions. $\cos\left(\sin^{-1}\left(\frac{1}{2}\right)\right)$ _____

 $\tan\left(\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)\right)$ _____

31. Evaluate the expression $\cos^{-1}\left(\sin\left(\frac{\pi}{4}\right)\right)$.

Give your answer as an exact value

32. List the domain and range of the inverse trig functions using interval notation and radians for angles.

$\sin^{-1}(x)$	
Domain: Range:	
$\cos^{-1}(x)$	
Domain: Range:	
$\tan^{-1}(x)$	
Domain: Range:	

33. Find the exact value of the following expression. $\sin^{-1}\left(-\frac{1}{2}\right)$

- A. __There is no solution
- B. _The expression $\sin^{-1}\left(-\frac{1}{2}\right) =$ _____ (Simplify your answer.)

Practice-Prep for Highline College Math Placement Test/WAMAP: Test 4

34. Find the exact value of each expression. Remember that the range of the arctan function is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

arctan(-1) = _____

arctan(1) = _____

arctan(0) = _____

35. For the right triangle shown here:

the measure of the angle indicated is: ______ °

```
Key - Form 1
        5
   1.
   2.
        0.35355339059327
        \sin(\theta) = \frac{5}{6.1032778078669} \sim \tan(\theta) = \frac{10}{7}
   3.
        \operatorname{cos}(\operatorname{cos}(\operatorname{cos}(\operatorname{cos}(\operatorname{x}))))) = \operatorname{cos}(x)) 
   4.
        x^{(2)}}{(x)} 
        \sqrt{458}
   5.
   6.
        0.89442719099992 ~ 0.44721359549996 ~ 2 ~ 2.2360679774998 ~
        1.1180339887499 ~ 0.5
   7.
        -0.86602540378444 ~ -0.57735026918963 ~ -1.7320508075689 ~ -
         1.1547005383793 ~ 2
        \frac{7\sqrt{53}}{53} \sim \frac{2\sqrt{53}}{53} \sim \frac{7}{2} \sim \frac{\sqrt{53}}{2} \sim \frac{\sqrt{53}}{7} \sim \frac{2}{7}
   8.
        \tan(t)\cdot\cot(t)=\tan(t)\cdot\frac{1}{\tan(t)}=1
   9.
   10. ____
   11. 3 \cdot \sin(x) \sim 3 \cdot \cos\left(x - \frac{\pi}{2}\right)
                                             2\pi
   12. –
   13. 0, \pi, \frac{\pi}{2}
  14. 0, \pi, \frac{5\pi}{6}, \frac{7\pi}{6}
   15. \cos(x) ONLY
   16. [0,π]
```

17. $\cos(t)$ 18. $\frac{24}{25} \sim -\frac{7}{25}$ 19. $9\cos(13p) + 9\cos(7p)$ 20. $\frac{5}{3} \sim \frac{3}{2} \sim \frac{1}{7}$ 21. $\frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6}$ 22. $0, \pi, \frac{\pi}{3}, \frac{5\pi}{3}$ 23. 0.35355339059327 24. $2\sin(v)\cos(v)$ 25. $\frac{1}{2}[1 + \cos(2\alpha)]$ 26. $1 - \sin(2\beta)$ 27. 1~1 28. $-\frac{\pi}{2} \sim -\frac{\pi}{3} \sim -\frac{\pi}{6}$ 29. 0.1 30. 0.86602540378444 ~ 1.7320508075689 31. $\frac{\pi}{4}$ 32. $[-1,1] \sim \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \sim [-1,1] \sim [0,\pi] \sim (-\infty,\infty) \sim \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 33. $-\frac{\pi}{6}$ $34. \quad -\frac{\pi}{4} \sim \frac{\pi}{4} \sim 0$ 35. 14.036°

These practice packets should **NOT** be taken more than once. Instead, use them to target specific areas that need further work and access more practice questions online with **WAMAP**